自我介绍
wholikeme
时间记忆
- 无
文章分类
最新日志
标题搜索
博客相册
最新访客
- 还没有任何会员到访.
快速导航
友情链接
- 此功能已被空间主人关闭
博客统计
- 点击: 19232
帖子数量: 11
开辟个人空间: 2018-05-28
最后更新: 2024-05-07
日本化学、工程学家田中耕一
文章内容 | 2022-12-12 13:11:36
分享: |
![]() |
文章评论
wholikeme | 无题 我们不难想象当年田中在经历了无数失败的实验后终于取得成功的狂喜,但他具有阿甘那样无比的韧性,依然毫不松懈地乘胜追击,又于1987年检测到分子量高达100872道尔顿的溶菌酶(lysozyme)七聚体(图7)。 ![]() 图7:通过UFMP-甘油混合介质检测到的溶菌酶七聚体分子离子峰。来源:Tanaka, K. (2002) Nobel Lecture。 回头来看,当初不慎在UFMP中加入甘油居然是一个历史转折点。此前的一年时间里田中几乎每天都要面对实验的阴性结果,只能以“我又排除了一种介质”来自我安慰。自从悟到UFMP-甘油混合物的妙用之后(图8),进一步优化实验参数的工作虽然还是枯燥和繁琐,但这时田中几乎每做一个实验就能有清晰可见的小进展,这使他体验到大学毕业当工程师以来前所未有的喜悦。当然整台质谱仪的研制成功也离不开田中的四位同事在其他环节上的通力合作,攻下超难度瓶颈的田中自然是该项目的头号功臣。 ![]() 图8:甘油与UFMP的混合介质是田中耕一首次实现大分子激光去吸附离子化的技术关键。来源:Tanaka, K. (2002) Nobel Lecture。 2022-12-12 13:22:38 | 引用 |
无题 辗转获诺奖机遇 1985年岛津及时为田中的质谱离子化新方法向日本专利局递交了申请,该专利在1993年获得批准。这对大多数在公司里就职的研究人员来讲就已经基本完成任务,接下来就由公司的商务开发部决定是否值得将该质谱仪推向市场。管理层会从公司的利益来考虑问题,一般不愿意其科研人员立即将成果在学术期刊上发表,这也是为何许多在工业界的科学家虽有出色成果但其原创性和优先权很难获得学术界的公认。学术界人士通常不会去阅读专利文献,更何况世界各国的专利法规差别很大,专利评审制度不像期刊的同行审稿制 (peer review system) 那样有一个相对统一而公平的标准。如果当年岛津的商务开发部认为田中等人的质谱仪没有市场潜力,那么这项成果就将被束之高阁而不被世人所知,读者朋友们也就不会读到这个精彩无比的传奇故事。好在田中又有阿甘那样挡不住的运气,接下来的一连串事件对他最后荣获诺奖而言是缺一不可的。 ![]() 图9:1987年日本岛津制作所的新型激光质谱仪总体设计。来源:Tanaka, K. et al (198 ![]() 2022-12-12 13:24:36 | 引用 |
wholikeme |
wholikeme | Re: 日本化学、工程学家田中耕一 首先是岛津在1987年决定将新型质谱仪(图9和图12)正式上市,为了起到产品宣传作用,公司允许包括田中在内的五位研发小组成员通过5月份在京都举行的日本质谱学会年会首次对外宣布这一成果。他们的实验结果在会议期间只是略有反响,大多数日本学者对其实用性仍持怀疑态度。而且该会议的现场报告和海报摘要全是用日语发表,不可能引起西方学者的注意。接着是1987年9月第二届中日质谱学研讨会在日本宝冢市召开,由于这是一个国际性会议,大会的工作语言是英语,因此也就吸引了一些西方学者前来参加。与会的美国专家中有一位就是来自著名的霍普金斯大学医学院的科特教授 (Robert Cotter),笔者本人在博士生一年级时曾有幸聆听过科特教授的质谱学课程,深感受益良多。 1987年时的科特教授就已是飞行时间质谱仪领域的权威学者,他在大会的报告中提出了一个看法,断言“电浆去吸附质谱仪(PDMS)的分子量检测范围要大于激光去吸附离子化质谱仪(LDI-MS)”。坐在听众席上的田中耕一心想科特还不知道自己在岛津的研究成果,于是在报告后邀请科特第二天来看他的海报。当科特看到田中的LDI-MS居然能检测到溶菌酶七聚体时实在难掩惊叹的神情。在征得田中的同意后,深信科学无国界的科特一回宾馆就将田中海报的摘要、离子化方法的细节和其中关键的几张质谱影印件通过传真发往欧美几家主要的质谱学实验室。事后证明,科特教授的这一热心宣传为默默无闻的田中在欧美确立了其LDI离子化新方法的原创性,也为这位不计较名利的后辈学者无意中提供了“贵人之助”。 2022-12-12 13:26:09 | 引用 |
无题 最后是与会的另一位日本学者,大阪大学助理教授松尾武清,多次提醒田中务必要将研究成果尽快写成英语论文发表。田中心想自己的英语水平这么差,写作能力更是一般,但考虑到松尾的一片好意,就“很不情愿”地答应一试。只求尽快发表的田中根本不在乎学术期刊的知名度,勉强写完论文手稿后扫了一眼质谱学领域的英文期刊列表,看到《质谱学快报》(Rapid Communications in Mass Spectrometry) 刊名中的一个“快”字就觉得很对胃口,二话不说就将稿件投往该杂志。果然这篇论文顺利通过了审稿,于1988年8月印成铅字(图10)。 ![]() 图10来源:Tanaka, K. et al (198 ![]() 仅仅两个多月后,德国的两位教授卡拉斯(Michael Karas)和希伦坎普(Franz Hillenkamp)就在《分析化学》杂志(Analytical Chemistry)上联名发表了他们独立研制的用尼克酸(nicotinic acid)为介质的LDI新方法。这种方法将被测大分子与尼克酸这类有机小分子共结晶,经过德国团队的不断改良和时间的检验,因其更强的实用性而成为现代介质辅助激光去吸附离子化(MALDI)质谱仪的基础(图11)。而田中的方法基本上无人问津,岛津的第一代MALDI质谱仪“LAMS-50K”在十多年里只卖出可怜的一台(图12)。但德国团队由于早在1987年9月就收到了科特的传真,亲眼看到了田中等人成功检测分子量高达10万的蛋白多聚体质谱,基于学术规范他们必须在论文的参考文献里征引田中的会议摘要(他们投稿时田中的正式论文尚未付印)。在此后的十几年里,MALDI质谱仪和ESI质谱仪得到了日新月异的发展,成为生物大分子质谱分析领域的两大支柱,也为二十一世纪后基因组时代(postgenomic era)的高通量蛋白质组学研究提供了技术上的保障。 2022-12-12 13:26:57 | 引用 |
wholikeme |
wholikeme | 无题 [size=24]2002年诺贝尔奖[/size]
日本时间2002年10月9日晚间,瑞典皇家科学院宣布田中耕一在内的3人获得诺贝尔化学奖。接获英语电话通知获奖时,田中正在公司加班。他从“Nobel”“Congratulation”这些单词推测自己可能获得“一个海外的小奖”,身旁的同事则认为是整人节目的手法(ドッキリ)。另一方面,日本文部科学省与大众传媒皆无所适从,因为默默无名的田中并非学者,也没有博士学位。前两年的诺贝尔化学奖得主野依良治与白川英树互相联络后,也都不清楚“田中是谁”[9]。 获奖后,田中因若干“特征”引起举世关注,自此职业生涯发生巨大变化。[注 1]尽管田中拒绝大幅升职,他仍于同年11月1日获得岛津制作所部长待遇。翌年1月担任岛津制作所“田中耕一记念质量分析研究所”所长(破例的“执行役员待遇”头衔,享有董事待遇)。母校东北大学特别修改条例,为他颁发名誉博士学位。 2011年,田中研究小组开发出能使血液检查敏感度提高100倍的新技术,更容易发现癌症等疾病[11]。 2022-12-12 13:27:51 | 引用 |
无题 普通工程师 田中耕一是总部设在京都的日本岛津制作所的一名普通工程师。岛津制作所是一家生产科学测试仪器的公司。专攻物理、化学或生物的专业人士或许略闻其名,但该公司在日本只能算是一家不大有名的中小企业。与以往的诺贝尔奖得主相比,田中的履历非常平凡而异色。他既非教授、亦非博士,甚至连硕士学位也没有。对于这一点,因发明电喷雾质谱仪 (ESI-MS) 而与田中分享诺奖的芬恩教授 (John Fenn) 居然也毫不知情,乃至在演讲时脱口而出“田中博士”。田中是毕业于东北大学工学部电气工学专业的学士,东北大学在日本是除了东京大学、京都大学以外的一所非常优秀的高等院校,曾经排名第三。由于专业背景的局限,田中1983年进入岛津制作所时只具备中学化学的知识,他恐怕做梦也没想到自己会在二十年后摘取诺贝尔化学奖的桂冠。 田中在24岁进公司后怀着极大的热情埋头于实验室的研究工作,把自己的婚姻大事和名誉升迁统统置之脑后。我们从他得奖后的自传了解到,田中直到35岁才通过婚姻介绍所完成个人终身大事,他自认在异性面前非常羞怯而又不善言辞。值得一提的是,田中2002年获奖时在其为之效力了二十年的岛津只有一个“主任”头衔 ,这仅比最低职称高了一级。日本企业的职务晋升通常实行双轨制,分为管理职和专门职(又称事务职)两大轨道。具有大学本科学历的人一般归于管理职轨道。进公司首先做一两年的职员,然后升任主任。往上还有系长、课长、次长、部长等等。每一种职务往往又细分2到3个等级,而且还有最低任职年限的规定。据报道,田中为了能在实验室第一线从事研究工作,从不认真参加升职考试。与世界各地的企业一样,日本企业的工资也是与职务挂钩的。每年工资普调的额度很小,大致为月工资的2% 到3%。因此我们可以毫不夸张地说,田中几乎是二十年如一日地淡泊名利,默默自安于日本企业社会的最底层。 2022-12-12 13:28:36 | 引用 |
wholikeme |
wholikeme | Re: 日本化学、工程学家田中耕一 质谱仪研究 田中从小热衷于电子技术,孩提时代他常以自己装配收音机为乐。选择电子工程为专业既满足了个人兴趣爱好,又符合日本企业社会强调实用技术的就业倾向。他刚进岛津时以为可以加入自己向往的医疗仪器开发项目,却被意外地分配到成立没多久的分析仪器开发小组。小组的成员是几个二十多岁的年轻人,而田中又是其中年纪最小的一个。他们最初的项目是想完善一种可探测半导体金属表面结构的精密激光仪,但经测试发现该仪器的性能没能大幅赶超已占有市场的德国同类产品,因而无法直接推向市场。朝气蓬勃的小组成员们不愿轻言放弃,决定另辟蹊径,转而尝试该激光仪器的另一种可能用途——生物分子的质谱分析。从1984年开始,小组成员对这个新项目重新明确了一下分工,由田中负责研究上游的生化样品制备和离子化方法,其他几位同事则分别负责质荷比分析器、离子监测器以及质谱数据系统。 正所谓时势造英雄。在分析化学领域的“百晓生兵器谱”上,质谱仪(mass spectrometer,MS)因其无以伦比的灵敏度而从1970年代开始逐渐稳居榜首。到了1980年代,当时先进的质谱仪已能轻松地检测分析浓度低到10-15摩尔(femtomolar)数量级的有机小分子化合物(分子量在1000道尔顿以下),但是生物大分子的检测仍是公认的超级难题。当时的化学权威们普遍认为,像蛋白质一类的生物高分子(分子量在10000道尔顿以上)是不可能从样品中被离子化而又不发生裂解地进入质谱分析所必需的气相。而田中当年的化学知识非常有限,根本不了解这些权威学者的悲观论调。在当时,田中通过文献了解到该研究领域内的一批欧美学者已把目光集中于“快速致热引发分子去吸附”的离子化方法。他们的想法是,被加温后的大分子虽然增加了蒸发进入气相而被离子化的可能,但同时也因稳定性下降而容易发生裂解,因此成功的关键在于能否在非常短的时间内让液相内的大分子达到高温。激光脉冲通常能在短到纳秒或微秒的时段内产生很高的能量,这种加热方式显然是一个非常诱人的选择(图1),但难点就在于能否找到一种吸收介质(matrix),将光能高效转换为热能再转移到包埋其内的大分子样品溶液中。 ![]() 图1:真空中激光快速致热引发的去吸附可能使大分子从液相蒸发进入气相,并通过飞行时间质谱仪(TOF-MS)检测到完整的分子离子峰。来源:https://www.nobelprize.org/uploads/2018/06/advanced-chemistryprize2002.pdf 2022-12-12 13:29:11 | 引用 |
无题 凭着一股初生牛犊的闯劲和想让岛津激光技术有新用途的迫切心情,田中决定啃一下筛选吸收介质的硬骨头。当时岛津的实验室里就有几百种介质可供选择,在理想的激光吸收介质是否存在都未知的情况下,化学知识极其有限和从未研究过离子化理论的田中就只能日复一日地机械性尝试。他拥有和阿甘一样简单的思维模式,能够不知疲倦地将筛选工作不断进行下去,用田中在自传中的原话来讲:“我当时感觉自己简直就与介质和质谱仪融为一体了”。但是这些大工作量的机械筛选并没能导致任何突破。这时岛津研究小组的另一位成员吉田佳一建议他试用超细金属粉末(UFMP,常用的是钴粉),这些纳米颗粒的直径与激光的波长相差不大,能够非常高效地吸收光能,因此UFMP看上去是黑色的。而且由于UFMP的颗粒之间距离狭小,大大降低了热能被发散和丢失的可能性。将UFMP与质谱仪要检测的有机样品混合,就能用激光照射使UFMP在短时间内达到高温。
2022-12-12 13:29:57 | 引用 |
wholikeme |
wholikeme | 无题 田中运用UFMP为介质取得了一个阶段性成果,他成功地提升了有机高分子的质谱检测范围,例如聚乙烯二醇(PEG)系列混合物单独被激光照射离子化后在质谱上只能看到1000道尔顿以下的多聚体,并且不同分子量的离子峰间分辨率较差。而PEG与UFMP介质混合后的激光照射质谱能够清晰地检测到2000道尔顿系列,同时200、400、600、1000、2000系列的峰间分辨率全面升高(图2),实验结果令人鼓舞。可惜UFMP介质用于分子量上万的生物高分子的离子化仍然收效甚微。 ![]() 图2:超细金属粉末(UFMP)全面提升了激光照射下聚乙烯二醇(PEG)飞行时间质谱的分辨率。来源:Tanaka, K. (2002) Nobel Lecture。 2022-12-12 13:31:01 | 引用 |
Re: 日本化学、工程学家田中耕一 Born and raised in a fishing village in the southern city of Uwajima, Chef Koichi Kondo learned how to cook later in life when he was 18. His father taught him how to make sushi and sashimi, while his mother taught him how to perfect making udon. Koichi Kondo - Heny Sison Culinary School ![]() 2022-12-12 13:33:30 | 引用 |
wholikeme |
发表评论
The images, logos, trademarks used on this site and all forwarded content are the property of their respective owners.
We are not responsible for comments posted by our visitors, as they are the property of the poster.
All other content of this website is copyrighted by 加西网
Private Policy | skin by 博客秀
We are not responsible for comments posted by our visitors, as they are the property of the poster.
All other content of this website is copyrighted by 加西网
Private Policy | skin by 博客秀