| Contact Us | CHT | Mobile | Wechat | Weibo | Search:
Welcome Visitors | 登录 | 免费注册 | 忘记了密码 | 社交账号注册或登录

Home

温哥华资讯

Realty

Education

Finance

Immigrants

Yellow Page

Travel

"烧光"70000亿,OpenAI与英伟达、台积电为敌

QR Code
请用微信 扫一扫 扫描上面的二维码,然后点击页面右上角的 ... 图标,然后点击 发送给朋友分享到朋友圈,谢谢!
AI芯片的另一个重头戏即HBM,英伟达的H100、H200标配6颗,到Blackwell架构的B200,则采用了8颗HBM3e内存。按照台积电最新的路线图,2026年,一颗GPU可以搭配12颗HBM内存,届时HBM的规格还将从12层堆叠的HBM3e,升级至16层堆叠的HBM4/4e。


如前文所述,2nm晶圆可以切出50颗GPU逻辑芯片,按照B200的标准,每片晶圆需要搭配400颗HBM3e内存。目前,1gamma制程的DRAM芯片,每片晶圆大概可以出1200颗DRAM颗粒,而按照85%的良率计算,最终可以得到1000颗DRAM颗粒,之后要将这些DRAM颗粒封装成12层堆叠的HBM3e内存。目前,封装的良率大概在80%左右,即一片DRAM晶圆可以出1000÷12*80%,约等于70颗左右12层堆叠的HBM3e内存。

也就是说,一片GPU晶圆,除了需要0.08片CPU晶圆,还需要5.7片DRAM晶圆。未来随着GPU逻辑芯片搭配HBM颗粒数进一步增加,尤其是堆叠数量从12层提升到16层,GPU:DRAM晶圆1:5.7的比例,还会进一步扩大。


按现有先进封装的中介层尺寸,一片晶圆可以完成15颗GPU逻辑芯片的封装,对应一片GPU逻辑芯片的晶圆,需要3.3片晶圆的先进封装。



每万片晶圆产能,不同晶圆厂的建厂投资总额,单位:美元

一句话总结:每10000片GPU晶圆,需要800片CPU晶圆,5.7万片DRAM晶圆,3.3万片中介层晶圆,3.3万片SoIC+CoWoS先进封装,5.7万片HBM封装,对应的投资额,即1*71+0.08*50+5.7*60+3.3*10+3.3*8+5.7*10≈476亿美元。

每10000片GPU晶圆所有配套芯片的生产工厂需要耗费476亿美元,加上其他杂七杂八费用直接算整数为500亿美元,换算成GPU芯片数量,为每月50万颗,一年600万颗。



8年半可以烧完7万亿美元


投资500亿美元,一年生产600万颗GPU,这是个什么概念?可以根据台积电CoWoS产能,来推算全世界的AIGPU的量,然后再进行对比。

2024年,台积电CoWoS总共31万片的产能,其中95%都是给AIGPU,只有一万多片是给Xilinx的FPGA,剩下的近30万片被英伟达、AMD以及全球互联网大厂诸如Google,AWS,Meta,Mircosoft的自研ASIC芯片瓜分。

也就是说,台积电CoWoS产能代表全世界AI芯片产能,2024年80%的GPU还是只使用2.5DCoWoS,英伟达的H100大约是每片29颗,其他自研ASIC则都高于这个标准,有的还超过40颗,目前只有AMD的MI300使用SoIC封装,每片约为15颗。

综合下来,今年台积电30万片CoWoS产能,对应大约是1000万颗GPU,这也就是2024年全球AIGPU的大致总量。前面提到,投入500亿美元,每年可生产600万颗GPU,也就是说,在2024年,想要生产满足全世界需求的1000万颗AIGPU,总投入需要830亿美元。这个水平相当于台积电2-3年的资本支出,也大概是台积电Fab20A,一座月产12万片的2nm芯片工厂的总投资额。
您的点赞是对我们的鼓励     这条新闻还没有人评论喔,等着您的高见呢
Note:
  • 新闻来源于其它媒体,内容不代表本站立场!
  • _VIEW_NEWS_FULL
    _RELATED_NEWS:
    _RELATED_NEWS_MORE:
    _POSTMYCOMMENT:
    Comment:
    Security Code:
    Please input the number which is shown on the following picture
    The Captcha image
    Terms & Conditions    Privacy Policy    Political ADs    Activities Agreement    Contact Us    Sitemap    

    加西网为北美中文网传媒集团旗下网站

    Page Generation: 0.0301 Seconds and 4 DB Queries in 0.0012 Seconds